Forest carbon stock assessment by a UAV technique: case study in Japanese forest

K. Hayashi1, S. Sugita2, T. Machimura3, A. Fujimoto3, H. Takagi1
1: Nagoya UNIV, 2: Chubu UNIV, 3: Osaka UNIV

OBJECTIVE

• Development of forest ecosystem service (ES) assessment with low cost, high resolution methods.
 – Compared with on site field survey, satellite data

As a first step
 – UAV (Unmanned Aerial vehicle)
 – Plantation forest with strength thinning for easy identification of individual tree
 – Several forest sites: Cypress forest, Cedar forest, Deciduous broad-leaved forest, etc.

METHOD

• UAV images
• SFM:
 – DTM, DSM, DCM development
• Tree height estimation based on DCM
• Field survey on trees
 – Height, DBH
• Comparison of two data sets
• Tree volume estimation
• Ecosystem service (ES) supply potential estimation

ES (ecosystem service) supply potential estimation
 - Carbon stock: Inoue and Kurokawa (2001) formula
 - Forest volume
 - Canopy crown coverage: Voronoi division method
 - Aesthetic tree beauty: Cherry trees, autumn leaves
 - Recreation: Onsite visual investigation

Note: SFM (Structure from Motion), DTM (Digital Terrain Model), DSM (Digital Surface Model), DCM (Digital Canopy Model), DBH (Diameter at breast height).

RESULT

<table>
<thead>
<tr>
<th>Date (Takayama Hinoki site)</th>
<th>Photos</th>
<th>AGL(m)</th>
<th>Wind(m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016/9/21/PM16-17 (leafing stage)</td>
<td>129</td>
<td>80</td>
<td>1.4</td>
</tr>
<tr>
<td>2016/11/2/AM11-13 (autumn leaves stage)</td>
<td>1029</td>
<td>40, 50, 60</td>
<td>1.2-0.2</td>
</tr>
<tr>
<td>2016/12/2/PM14-15 (falling leaves stage)</td>
<td>743</td>
<td>60</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Fig. DSM (2016/09/21)
Fig. Orthophotos (2016/09/21)

A Part of assessment methods was detailed in Katada et al. 2017.
CONCLUSION and REFERENCES

- Relatively high accuracy of tree height estimation
- DTM is key for tree height estimation
- Seasonal images are useful for ES assessment
- Future issues
 - Classification of forest type
 - Dense forest assessment
 - Variety of ES assessment

ACKNOWLEDGEMENT

The authors thank Chubu Forest Co. for giving us the opportunity to study the forest site. The authors also thank T. Machimura’s lab. students and W. Kobayashi for their assistance for the field survey. This work is supported by the Collaboration Research Program of IDEAS, Chubu University and the joint usage / research program of the Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University.